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Example of a stimulus configuration for which an
asymmetric confusion matrix would be obtained
(see text).

Long-term spectra of eight underwater sounds
(From Howard, 1976).

Visual representations of the eight underwater
sounds, photographed from the display monitor.

8 x 8 Experiment: Probability of a confusion
error for each of the eight stimuli, for each
observer.

8 x 8 Experiment: Distribution of response
probability for each stimulus, for each observer.
Obtained distributions are given by solid lines
and filled circles; distributions predicted by
the model are given by dashed lines and

open circles.

8 x 4 Experiment, Condition 1: Distribution of
response probability for each stimulus, for each
observer. Obtained distributions are given by
solid lines and filled circles; predicted
distributions are given by dashed lines and

open circles.

8 x 4 Experiment, Condition 2: Distribution of
response probability for each stimulus, for each
observer. Obtained distributions are given by
solid lines and filled circles; predicted
distributions are given by dashed lines and

open circles.

8 x 4 Experiment, Condition 3: Distribytion of
response probability for each stimulus, for each
observer. Obtained distributions are given by
solid lines and filled circles; predicted
distributions are given by dashed lines and

open circles.

Estimated salience weights on the four dimensions
for each observer, for each condition in the

8 x 8 and 8 x 4 experiments (solid lines).

The pattern of weights that maximizes probability
of correct identification is given by the

dashed line for each condition.
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A reasonably complete account of the process by which
humans are able to identify complex auditory or visual
stimuli must address two issues: (1) the nature of the
psychological representation of complex stimuli, and (2) the
nature of the decision processes that act upon the internal
representations to yield an identification response. While
there has been substantial research directed at the
representation and decision processes separately, there has
been much less effort directed towards understanding the
integration of these processes in complex-stimulus
identification. Our major concern in this paper is with the
relationship between the perceptual representation of
complex stimuli and identification per formance. The
question 1is, given specific assumptions about the structure
of the perceptual space, how well can we account for the

pattern of responses observed in an identification task?

Our approach to the problem involves two parts: (1) the
derivation of a multidimensional perceptual space for a set
of complex stimuli from the application of a
multidimensional scaling (MDS) procedure to judgments of

stimulus similarity, and (2) the wuse of a probabilistic

- '—_”;.‘; -
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decision

model to predict the matrix of identification

confusions from the geometric structure of the derived

perceptual space. We are interested in the validation of

the MDS procedure that would be supplied by a demonstration

that the MDS-derived perceptual space can be used to predict

behavior in an independent task. And we are interested in

the possibility that the MDS procedure can be a substantial

aid 1in understanding, and predicting behavior 1in, the

of stimulus identification.

fundamental task

We discuss first the rationale for, and assumptions

made i, inferring a psychological space wusing MDS

techniques. Then in the next section we describe our

decision model for predicting identification confusions.

The Multidimensional Perceptual Space

Much of the work on the representation of complex

auditory or visual stimuli suggests that perception is based

on an analysis of the patterns along a number of

psychological dimensions or features. In

information-processing models, this processing 1is often

referred to as "feature extraction" and 1is thought to

reflect a selective reduction of information whereby

features are extracted from the

perceptually important

information is lost.

pattern while other

Report No. 3719 Bolt Beranek and Newman Inc.
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We may conceive of these dimensions as forming a
multidimensional perceptual space in which each stimulus is
represented as a point. This space, of course, 1is not
directly observable. Both the set of dimensions comprising
the space, and the loci of the stimuli within the space,
must be inferred by indirect methods. Extensive development
in recent years has led to the emergence of multidimensional
scaling as an important method for deriving a representation
of the perceptual space (e.g., Shepard, Nerlove, and Romney,
1972; Romney, Shepard, and Nerlove, 1972). MDS procedures
are designed to decompose a matrix of pair-wise similarity
judgments on a set of complex stimuli into a metric space of
some (investigator-specified) number of orthogonal
dimensions. Each stimulus is defined as a point 1in the
space such that, ideally, the distances between pairs of
stimuli in the space are monotonically related (inversely)

to the degrees of judged similarity of the pairs.

The set of abstracted dimensions, and the relative loci
of the stimuli within the space, may be interpreted to
reflect the structure of the psychological space. This
interpretation involves several assumptions. Most MDS
procedures assume that the measure of the underlying

psychological space is a member of the family of power

POV BV

4
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metrics. (1) This family includes the
city-block metrics. The power metrics carry

important properties: (@)

2

interdimensional additivity, and (3)

subtractivity (Tversky and Krantz, 1970).

decompos

and Newman Inc.

Fuclidian and
with them three

ability, (2)

intradimensional

Decomposability

means simply that the distance between any two points in the

space is a function of dimension-wise
Interdimensional additivity asserts that
function of the sum of the dimension-wise
asserts

Intradimensional subtractivity

dimension-wise contribution is the absolute

difference between the two points on that

intuitive implication of these properties is
{

given pair of stimuli, the contribution to

the values of the two stimuli on one

contributions.

distance 1is a

contributions.

that each
value of the
dimension. An

that , for a

distance made by

dimension is

independent of the values on all other dimensions.

Having obtained an abstract multidimensional solution,

an investigator may attempt to relate

the derived

(7Y Power metrics are the class of metrics
distance between the points
y ¢ (y].....yn\ is given by

«i\.\.)'\

i
-~
-~
i
>

for r > 1.

such that the

X = (x1,...,xn\ and

L
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psychological dimensions to the known physical structure of
the stimuli, Success in identifying the psychophysical
functions relating psychological to physical dimensions s
typically measured by o high correlation between values on a
psychological dimension and values on the candidate physical

measure, across stimuli.

MDS procedures have been used successfully to identify
psychological dimenstons underlying the perception of speech
sounds (e.g., Pols, Van der Kamp, and Plomp, 1969; Klein,
Plomp, and Pols, 1970; Shepard, 1972; Shaw, 1975); complex,
non=-speech sounds (e.p., Plomp and Stenneken, 1969; Miller
and Carterette, 1975 Morgan, Woodhead, and Webster, 1976 ;
Howard and  Silverman, 19767 Howard, 1977); and complex
visual patterns (e.g., Stenson, 1968; Shepard and Chipman,
1970 Hardzinski and Pachella, 1977;: Pachella and Somers,
1978) . In this context, success has usually meant that the
derived multidimensional space accounts for a large
proportion of the variablility in the similarity Judgments
and t hat the revealed 1dentity of the psaychological

dimensions {s intuitively reasonable.

We suggest here that meeting either or both of these
criteria does not provide strong evidence to support the
validity of the derived representation. What ils desirable

is a demonstration that the perceptual space derived trom
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similarity judgments in one task can then be used to predict
behavior in some other, independent task. Our present
experiments provide an example of one such test, in that we
use the MDS-derived space to predict performance in various

identification tasks.

The Identification Model

¥

We present here a decision model intended to predict
the confusion matrix for a set of m stimuli in an
identification task, on the basis of a multidimensional
perceptual space. In the simplest case, the perceptual

space is that revealed by application of an MDS procedure to

judgments of similarity, and we shall confine our
presentation in this section to that case. We note for
later reference that the decision model can accept

additional dimensions, as suggested by other evidence.

We take as our starting point the set of spatial
coordinates, wi,k for each of m stimuli, S % A O m), on
each of n dimensions, dk (1 <k < n), as provided by the
MDS procedure. Though the model can be used with any MDS
procedure that yields such a set of spatial coordinates, the
data analyses presented in this paper are based on the

INDSCAL procedure (Carroll and Chang, 1970; Carroll, 1972;

Carroll and Wish, 1973). TINDSCAL assumes that the judged
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similarity between any pair of stimuli is a (decreasing)
linear function of the Euclidean interstimulus distance in
the wunderlying perceptual space. INDSCAL differs from most
other MDS procedures in that it yields not only the spatial
configuration of the set of m stimuli in the n-dimensional
"group stimulus space," but also a vector of weights for
each observer that reflects the relative importance or
salience of each dimension for that observer. The effect of
these salience weights for a given observer 1is to weight
differentially the contribution of each dimension 1in
determining interstimulus distance. Specifically, the
distance between stimulus Si and stimulus Sj’ for an
observer with salience weights Wi (1 < k < n) is given by

: s ]tve

Di,j = [ K wk(dk’k - qj,k) J : (1)

Our model will also assume the weighted Euclidean
distance metric given in Equation (1). We will not assume,
however, that the particular set of salience weights
determined for each observer by INDSCAL in the similarity-
judgment task necessarily applies to the identification
tasks. In fact, we will show later that, within observers,
the set of salience weights changes in predictable ways
across different conditions of the identification task.

Accordingly, the salience weights for each observer are
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treated in the model as parameters whose values are to be
estimated from the confusion data. We assume further that
the salience weights are all positive (wk > 0) and sum to
1 (E Wi F ). The latter constraint is simply a normalizing
convention which reflects the fact that only the relative

magnitudes of the weights are meaningful in the model.

Having defined the set of interstimulus distances
ni.j' the next step 1is to relate these distances to
interstimulus confusability in the identification task. On
intuitive grounds, confusability should be some monotone
decreasing function of interstimulus distance. We define a
set of confusion weights C. ., assuming that confusability

1)

between stimulus Si and Si is given by

C, . = expl-aD, ,) (2)

i : Ead
where a is a sensitivity parameter, greater than 0. As a
decreases towards 0, over-all stimulus confusability
increases; as a becomes large, over-all confusability

decreases.

Several consequences of this relation are worth

noting: (1) with both a and Pi i bounded below by 0, Ci i
is bounded between 0 and 1; () since Di i is a distance
Di,j z nj'iv and therefore Ci.j = Cj,i; and (3)
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since D11 = O for all i, Cii = 1 for all i. The choice of
this particular function, from several considered, was
dictated by its clear superiority 1in accounting for our
confusion data 1in preliminary analyses. It is the same
assumption used successfully by Shepard (1957, 1958a, 1958b)

in his work on stimulus and response generalization.

Finally, the conditional probability of giving the
response assigned to stimulus Sj when stimulus Si was

presented is assumed to be the confusability of SJ with Si

relative to the summed confusability of all stimuli with Si:
" tosnd
Pr(RJISi) =z —2i=— . (3)

Equation (3) is essentially luce's choice model (1963), with
the added assumption that there are no differential response
biases. While it would be a simple matter to include
measures of response bias in the model, we have chosen to
exclude them here for reasons of simplicity (fewer
’parameters to estimate) and because we have no reason to
expect strong response biases. In our tasks, the a priori
presentation probabilities (known to the observers) were
equal across stimuli, the response set was homogeneous, and

there were no differential payoffs.
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We are also implicitly asserting in Equation (3)
that the set of responses assigned to stimuli are
sufficiently distinguishable that response confusions are

negligible,

model .

It is relatively common in identification tasks to
find asymmetries in the confusion matrix about the main
diagonal; that is, it is often true that
Pr(RJ|Si) Fd Pr(Ri|SJ). One well-known source of this
asymmetry is response bias. Of 1interest here 1is the
observation that there is a second possible source of
confusion asymmetries, one which arises from the decision

rule itself. This can most easily be seen

shown in Fig. 1, in which three stimuli

two~-dimensional space. As drawn,

01'} > D1'? > ["?‘.2 > Di.i = @ (for
and therefore
C1'3 < Cl,? < (‘,2’2 < Ci,i = | (for

Calculating Pr(R1|S?\

and they are therefore not incorporated into the

in an example,

are embedded in a

all 1),

all 1) .

PF(R1|52) — _

10
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DIMENSION 1

Example of a stimulus configuration for which an
asymmetric confusion matrix would be obtained
(see text).

m
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and
\‘ \ \‘]
PF(Rﬁlsl\ = 2 - 2-
& v Al ! x +
2 s R T TR B T Bt
Since ¢, 3 < C, 3 we may conclude that

Pr(R2(SI) > Pr(R‘iSP). thus demonstrating asymmetry in the

confusion matrix about the main diagonal.

From this example, we can see that the confusion

asymmetry between two stimuli Si and Si arises because the

two response probabilities Pr(lesi\ and Pr(Rilsi\ are

determined by the magnitude of the shared confusion weight,
Cij' relative to a sum of confusion weights, where the sum
is determined from the "point of view" of the stimulus, S

or Sj. These two sums may differ substantially in

magnitude, depending upon the geometric configuration of the

stimuli in the perceptual space.

Two Types of Identification Task

The primary test of the ability of the MDS-derived
perceptual space, and the associated decision model, to
predict identification behavior involves a straightforward
identification task in which m responses are paired
(one-to-one) with the m stimuli presented. We call this a
"complete" identification task.

ke

e ——— J
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We also consider a "partial" identification task in
which fewer than m responses are available for use with the
m stimuli presented. This task corresponds to a situation

in which some subset of the total number of stimuli present
is of special interest -- the members of this subset
constituting "signals" -~ while the remaining stimuli are
regarded as "noise," and as not requiring identification.
We have referred to this c¢lass of task elsewhere as a
"detection-and-identification" task (Swets, Green, Getty,
and Swets, 1977T) . The oObserver is asked first to make a
detection response ("signal" or "noise") and then to c¢choose
one of the available identification responses ~- the one
corresponding to the one of the signals most 1likely to be

present.

The partial identification task employed here had
three conditions, with a different subset of the m stimuli
defined as signals in each condition. This variation across
conditions reflects the practical fact that the subset of
stimuli that is of special interest varies from ane
situation to another. The listener to degraded speech may
want to concentrate at some time on distinguishing between
Just two particular phonemes, rather than among thirty or
so. The sonar observer may wish to distinguish among ships

and ignore variations in ocean depth, or vice versa. In the
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present instance, the variation across conditions provides a
test of our decision model's ability to deal with changes in
the salience weights, which may reflect changes in the
relative usefulness of the various perceptual dimensions as

the set of signals is changed.

Method

7

timuli

Qur stimuli consisted of visual representations of a
set of eight underwater sounds, originally selected by
Howard (1977) to represent a range of confusible natural and
mechanically-produced sounds. They were referred to Dby
Howard as (1) Sheet Cavitation (SC), (2) Biologics (BI), (3)
Compressed Cavitation (CC), (4) Torpedo (TQ), (5) Diesel
Engine (DE), (6) Rain Squall (RS), (7) Steam Noise (SN), and
(8) Flutter (FL). Their long-term energy spectra are shown

~

in Fig. <.

Qur visual representations displayed the spectra as
frequency (horizontal axis) versus time (vertical axis)
versus energy (darkness -- the greater the energy, the
darker the trace). We introduced periodicity as an
additional physical dimension by sinusoidally varying the

average darkness of the signal profile in the temporal

14
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Figure 2. Long-term spectra of eight underwater sounds

(From Howard, 1976).
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T —

(vertical) direction. We grouped (1) SC and (2) BI with (7)
SN and (8) FL, giving all four relatively low-frequency
periodicity, and gave the remaining four relatively
high-frequency periodicity. Specifically, the cycles per
stimulus were 15, 16, 17, and 18 for Stimuli 1, 2, 7, and 8,
respectively, and 21, 22, 23, and 24 for stimuli 3, 4, 5,
and 6, respectively. The resulting visual patterns are

shown in Fig. 3.

The stimuli were constructed on a COMTAL model
8000-SA image-processing system, driven by a DEC PDP-11/34
minicomputer, and displayed in an area 24 cm wide by 12 cm
high on a CONRAC 17-inch (43-cm) SNA television monitor. As
¢ is apparent in Fig. 3, we added a background of random noise
to each stimulus pattern. The noise consisted of a

256 x 128 matrix of elements, each having an independent

gray value sampled from a Gaussian distribution with mean
128 units and standard deviation 15 units on the 256 unit

gray scale of the COMTAL.

; Each stimulus pattern was constructed by subtracting
from the noise background, sampled anew on each trial, the
% horizontal brightness profile corresponding to its long-term
1 spectrum. Thus, increasing energy in the spectrum resulted

in a darker trace. The spectral profiles of all eight

signals were scaled to have the same space-average darkness

16
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Figure 3. Visual representations of the eight underwater
sounds, photographed from the display monitor.

17
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of 20 gray units below the mean gray value of the noise
background. In addition, the darkness of each point in a
signal's profile was sinusoidally varied in the vertical
dimension. For the similarity-judgment task, the
peak-to-peak brightness variation was 200 percent about the
steady-state value, resulting in high-contrast images
similar to those shown in Fig. 3. For the wvarious
identification tasks, the peak-to-peak brightness variation
was reduced to 60 percent about the steady state value,

thereby reducing the image contrast considerably.

For all tasks, the brightness and contrast controls
on the CONRAC monitor were adjusted such that the middle
gray (128 units) had a luminance of about 62 cd/mz, and full

white (255 units) a luminance of about 308 cd/m2.

Apparatus

In the various identification tasks, three observers
sat at individual video computer terminals (Lear Siegler
ADM-3A) approximately two meters from the stimulus-display
screen, whose center was about 1.1 m above the floor.

Ambient room lighting was maintained at a dim level.

A1l experimental events (stimulus display, response
recording, and trial timing) were controlled by the PDP-11

computer.
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Procedure

Similarity Task. The observers rated similarity of

pairs of stimuli on a 10-point scale. Each of the 28
possible pairs was presented side by side by means of 35mm
slides for 15 seconds, followed by a 15-second response
interval. Fach slide was a photograph of an high contrast
display of one of the eight stimuli on the CONRAC monitor
screen, similar to Fig. 3. Other details of the procedure
are available elsewhere (Swets, Green, Getty, and Swets,

1977).

Complete Identification Task. Fach trial began by

blanking of the COMTAL screen, followed 2.5 seconds later by
a 2.0 second low-contrast display of one of the eight visual
stimuli. Each observer then made a self-paced
identification response on the terminal keyboard, pressing
one of eight keys labelled with the digits 1 to 8 (typing
errors could be corrected with an "erase" key). Observers
could make reference to a sheet on which were arranged
labelled, high-contrast Polaroid photographs of the eight
stimuli -- again, similar to those shown in Fig. 3. As each
observer responded, the number of the presented signal was
displayed on his/her terminal's screen. When all three had
responded, the stimulus image was redisplayed along with the

correct answer for about two seconds.
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The sequence of stimuli was determined completely at
random. Fifty trials were presented in a block, and three

blocks were presented in a one-hour session.

Partial Identification Task. In this task, four of

the eight stimuli were designated as "signal" and allowed as
responses, while the remaining four were designated as
"noise" and not allowed as responses. A different set of
four stimuli was designated as the "signal" set in each of
three conditions. The procedure for the partial
identification task was generally the same as that described
above for the complete identification task except that, for
reasons discussed elsewhere (Swets, Green, Getty, and Swets,
1977), on each trial a stimulus pattern was presented in
five sequential stages. At each stage, a successive fifth
of the pattern was revealed, pushing down the display of
earlier stages, and the observer made both a detection and
an identification response. OQOur present analyses wuse only
the identification responses from the last (fifth) stage of
each trial when the complete display of the stimulus was in
view. Observers were provided feedback -- either the signal
number (when one of the four "signals" was presented) or the
word "noise" (when one of the four "noise" stimuli was

presented) -- at the end of each trial.

20
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Observers

The three observers were members of BBN's technical

staff, including one of the experimenters (JBS).

Derivation of the Perceptual Space:
The Similarity-Judgment Task

A set of 28 similarity judgments (all pairs of the
eight stimuli) for each of the three observers was submitted
to INDSCAL analysis. The psychological coordinates of the
eight stimuli in the three-dimensional perceptual space
revealed by INDSCAL are listed as W1,1 to wi,3 in Table 1.
Details of the INDSCAL analysis are available elsewhere
(Swets, Green, Getty, and Swets, 1977). Briefly, we found
the three INDSCAL-derived dimensions to correlate highly
with physical measures of "low-frequency energy,"

"mid-frequency energy," and "contrast," respectively.

Surprisingly, "periodicity" did not emerge as a
psychological dimension, despite the fact that our observers
reported it to be a salient dimension in the identification
task. Moreover, as described 1in the -earlier report, an
INDSCAL analysis applied to the similar{ty judgments of
another group of 14 judges yielded periodicity as a fourth
dimension, along with the same three dimensions as given by

the three observers.
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Table 1

Psychological Coordinates for Each of the
Eight Stimulus Patterns on Four Dimensions

Stimulus Psychological Dimensions

Vi ¥y,2 Yy,3 Yy |
(low=frequency) | (mid-frequency) | (contrast) [ (periodiclty) g
S ] f

1 -. 405 JU27 .229 -.540

2 RIS -.143 075 -.380

5 = e -.209 L2u3 QT

4 .380 -.083 -. 344 «231

5 ST « 29T -.213 . 386

b -.154 =521 -.233 540

Y -.198 20T .097 = a2 3

8 Ll -.276 -. 454 =077
|
|
1
|
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In order to determine the gain, |if any, in
predicting confusion matrices when periodicity was included
as a fourth dimension for the three observers, we created a
periodicity coordinate for each stimulus. The assigned
values, given in the last column of Table 1, are linearly
related to our physical measure of periodicity, subject to
the constraints -- used by INDSCAL in assigning coordinates
on a psychological dimension -- that (1) the mean across
stimuli is 0, and (2) the variance across stimuli is 1. We
realize that the true psychological coordinates for
periodicity are probably not 1linear with the physical
measure; however, lacking a strong rationale for any other
specific relationship, we may suppose that linearity 1is a

good first approximation to the true relationship.

The 8 x 8 Complete Identification Task

There were eight response alternatives 1in the
complete 1identification task, each corresponding to
identification of one of the eight stimulus patterns. Of
the 54 blocks of trials run, the first three were regarded
as practice and omitted from analysis. 1In addition, the
data of two other blocks, and part of a third, were lost due
to equipment failures. The remaining 2421 trials for each

observer were included in the analyses that follow.

23
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Results

Error Probability. A plot of error probability

against stimulus number, shown for individual observers in

Fig. 4, reveals that the stimuli were not equally
confusible. In fact, Stimulus No. 2 (BI) was never, or
almost never, confused with any other stimulus. Individual

observers showed similar patterns of errors across stimuli,
as seen in Fig. 4. They also showed similar over-all error
rates (13, 20, and 21 percent errors for observers BF, JK,
and JS, respectively). The over-all probability of a
confusion error, averaged across stimuli and observers, was

18 percent (1304 errors in 7263 trials).

Confusion Matrix. The matrices of raw confusion

frequencies are given for each observer in Table 2. The
patterns of confusions embedded in these numbers are most
readily apparent when response probability distributions are
plotted for each stimulus, shown separately for each
observer by the solid lines and filled circles in Fig. 5. A
prominent feature of these data 1is the high degree of
similarity across the three observers in the confusion
pattern for each stimulus. It is this matrix of confusion
distributions that we seek ¢to predict by the model, as

described in the following section.
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Table

8 x 8 Experiment: Matrix of Confusion
Frequencies for Each Observer

Observer [ Stimulus Response rotal

BF 1 273 0 1 1 0 0 12 0 287

4 1 2 0 238 18 7 8 104 284
20 249 8 3 3 292
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8x8 EXPERIMENT
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Figure S5A. 8 x 8 Experiment: Distribution of response
probability for each stimulus (Stimuli 1 to U), for

each observer. Obtained distributions are given by
solid lines and filled circles; distributions predicted
by the model are given by dashed lines and open circles.
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Model Analysis

Parameter Estimation. Model parameters were

estimated separately Falr each observer using a
negative-gradient hill-climbing technique that sought to
minimize the sum of squared deviations between the predicted
and obtained confusion matrices for that observer. Under
several different analysis conditions regarding the
dimension salience weights, discussed below, the number of
parameters estimated ranged from one (a, the sensitivity

parameter) to five (a and four salience weights, wi to wy).

Prediction of Confusion Matrices. We first fitted

the model to the individual confusion matrices of our three
observers using the three dimension salience weights for
each observer provided by the INDSCAL analysis. The
parameter values of individual observers, and the proportion
of variance accounted for in the data of individual

observers, and the average values, are shown in Table 3A.

Estimating only a single parameter, a, for each
observer, we found that we were able to account for 97
percent of the variance in the full confusion matrix,
averaged across observers. On the other hand, if we
included only identification errors (the off-diagonal

elements) in the variance analysis, we accounted for only 21

29




[
L

8 x 8 Experiment:
and the Proportion
the Model, f

able

Estimated
of Variance

or E

Bolt

ach

Beranek a

%

nd Newman Inc.

Parameter Values
Accounted
Observer

or by

Proportion of Variance
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A. Three-dimensional model : Wy -Wo INDSCAL constrained

BF L34 % 26% LAl -— 10.9 .987 ;

JK 5T .29% 14 - 8.1 S, :

Js .33% L39% . 28% -— T T 942 « L2k
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percent of the error-matrix variance. There are at 1least
four reasons why the variance accounted for, considering
only errors, may be small; we take them up in turn in the

next four paragraphs.

First, the obtained relative frequencies calculated
for the off-diagonal cells contain the effects of both
quantization error (the observed frequency of each response
is 1integral) and sampling error. Since the predicted
probabilities of most off-diagonal cells are very small, the
range of variation in the measures to be correlated is
small. We may expect, on these grounds, that the
unpredicted variation due to quantization and sampling error
is substantial relative to the small total amount of

variation present.

Second, the brief stimulus duration (2 seconds) may
have resulted in some proportion of trials on which the
stimulus either was not seen, or not seen 1long enough for
adequate encoding. Responses on these trials should
represent pure guesses, uniformly distributed across the set
of responses (assuming no response biases). While guessing
undoubtedly occurred occasionally, it is unlikely that it
represents a major contribution to the confusion matrix. If
it did, we would expect to see a non-zero baseline response

frequency across all responses for a given stimulus, an
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expectation which is not confirmed by the observed confusion

matrices.

Third, the set of dimension salience weights derived
by INDSCAL from the similarity-judgment task may not
accurately represent dimension salience in the
identification task. This possibility was examined by
fitting the model with the salience weights, W4 to w3, and
the sensitivity parameter, a, free to vary. As seen in
Table 3B, the estimated parameter values change somewhat
from their INDSCAL-derived values; however, there is no
significant increase in proportions of variance accounted
for either in the full matrix or in the off-diagonal cells.
Thus, for a model of three dimensions, the JINDSCAL-derived
salience weights are nearly optimal relative to the best
possible performance of the model with unconstrained choice

of parameter values.

This 1leads us to consider the fourth possible
reason, namely, that one or more dimensions wused by the
observers 1in the identification task did not emerge in the
INDSCAL analysis. As discussed earlier, we have good reason
to suspect that the temporal periodicity present in the
stimulus patterns is one such missing dimension. So we
fitted the model to the confusion matrices a third time,

using the INDSCAL-derived salience weights for each observer
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for the first three dimensions, and allowing the salience
weight for the fourth dimension (periodicity) to wvary. By
including periodicity as a fourth dimension, we found that
the average proportion of variance accounted for in the full
matrix increased from 97 percént to 98 percent, shown in
Table 3C, and that accounted for in the off-diagonal cells
increased from 21 percent to 39 percent, a substantial
improvement . Moreover, with an average salience weight of
.46 assigned to periodicity, it was by far the most
important dimension among the four in determining

interstimulus distance.

Finally, we wished ¢to determine 1if any further
improvement in prediction might be obtained by allowing the
salience weights (constrained to their INDSCAL values in the
last fit) to vary. The result, shown in Table 3D, was
essentially no further increase 1in the proportion of
variance accounted for. The values of Wi Wao, and W
changed very Little, on average, from the INDSCAL
values -- indicating, as observed before, that the INDSCAI

values were nearly optimal in terms of the model's ability

to predict the full confusion matrix.

The pattern of results discussed above suggests that
the effect of including periodicity as a fourth dimension is

independent of, and additive to, the effect of freely

s
’
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estimating the first three salience weights. Including
periodicity as a fourth dimension increases the proportion
of variance accounted for by 1 percent and 18 percent,
respectively, in the full and error matrices when INDSCAL
constraints are wused (Tables 3A and 3C), and by 1 percent
and 22 percent in the full and error matrices when
parameters are freely estimated (Tables 3B and 3D). Freely
estimating weights W, to w3 increases the proportion of
variance accounted for by 0 percent in both the full and
error matrices when only three dimensions are used (Tables
34 and 3B), and by 0 and 4 percents when periodicity is

included as a fourth dimension (Tables 3C and 3D).

We turn now from summary measures of goodness-of-fit
to the prediction of individual c¢ells in the confusion
matrix, using the four-dimensional model with
freely-estimated salience parameters. We choose this
version of the model, in spite of the almost equally good
fit noted above when INDSCAL constrained parameters are
used, for consistency with data reported in the next section
on the partial identification tasks, where fits of the
different model versions were not equally good. The
distributions of predicted conditional response
probabilities are plotted for each observer in Fig. 5 as

open circles connected by dashed lines, superimposed on the

3
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obtained distributions. The difficulty one has in
separating obtained and predicted curves attests to the

considerable accuracy of the predictions.

There are occasional deviations between predicted
and obtained probabilities that appear to be systematic, in
that two of the three observers show the same pattern of
deviations. For example when Stimulus 3 was presented, both
observers JK and JS made Response 6 more frequently and
Response 7 less frequently than predicted. This, and other
such examples, may result from the observers' use of
dimensions that were available in the set of patterns but
not included 1in the model analyses. Over-all, though, the
model that incorporates three INDSCAL-derived dimensions,
and a fourth added, predicts quite well the individual cells

of the confusion matrix.

The 8 x 4 Partial Identification Task

We may test the model in another way by considering
how well it is able to predict the pattern of identification
confusions when an observer is limited to responses
associated with only a subset of the eight stimuli. In this
section we apply the model to three conditions of an 8§ x U
partial identification task, in which only four of eight

stimuli -- referred to as the "signals" -- correspond to
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allowable identification responses, a different set of four

stimuli in each of the three conditions.

The "signals" 1in Condition 1 were the four stimuli
1, 2, 5, and 6 of Fig. 3. These signals were not clearly
distinguished from the remaining four "noise" stimuli on any
of the four physical dimensions discussed previously. In
Condition 2, the signals were stimuli 3, 4, 5, and 6, the
patterns with relatively high-frequency periodicities. In
Condition 3, the signals were stimuli 1, 3, &, and 7T,
patterns which tended to have low values on our physical

measure of mid-frequency energy.

The analyses that follow are based on 230 trials for
each observer in each condition. On the average, each of
the eight stimuli was presented about 028 times in each
condition. An initial block of 30 practice trials has been

omitted from analysis for each condition.

Results

Error Probability. Error rates can be defined only

for the four "signals" in each condition. All responses on
"noise" trials were necessarily errors since the noise
stimuli did not correspond to allowable identification

responses. Using only the signal subsets of the confusion

36
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matrix for each condition, we found considerable variation
in the error rates of the three observers, averaged across
conditions: 5, 24, and 8 percent errors for observers BF,
JK, and JS, respectively. There was also variation in the
error rates of the three conditions, averaged across
observers: 8, 21, and 9 percent for Conditions 1, 2, and 3,
respectively. Finally, the over-all error rate 1in this

experiment , 12 percent, was somewhat lower than that in the

full 8 x 8 experiment (18 percent).

Confusion Matrices. The raw confusion matrices are

given in Table U for each observer and for each condition.
The corresponding response distributions are plotted in
Figs. 6-8 for each stimulus, for each observer, and for each
condition, by the filled circles connected by solid lines.
As in the first experiment, the response distributions for a
given stimulus and condition are generally very similar
across the three observers. The most notable exceptions are

~

the distributions for stimuli 6, 7, and 8 in Condition
(Fig. 7B), and for stimuli 2, 6, and 8 in Condition 3 (Figs.
8A and 8B). With the exception of stimulus 6 in Condition
>, these are all instances in which the identification
response corresponding to the presented stimulus was not

among the set of allowed responses, a fact we will return to

shortly in considering the model's predictions.
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Table &
8 4 Experiment: Matrix of Confusion Frequencies
ffor BEach Observer in Each of Three Conditions
b s JStimulus Conditlion
Response Total Response Total Response Total
1 ¥ I5 16 3 |4 |5 |6 1 2 45 17

BE 1 28 Q 0 0 8 3.0 0 0 0 32 32 0 0 1 33
2 0 33 0 0 33 1l | 26 Q 0| 27 25 0 0 o 25
3 Q O ¢ i 18 e) 2Ry Q Q 1 2b 0 30 0 2 3
4 0 g 1l 19 30 0 ] 0 4] 28 Q0 6 23 o) 31
5 0 0 |27 1 | 28 0 2 |22 0] 23 0 0|23 0| 23
O 0 0 2 28 30 0 3 0 4o HE 0 8 i 18 3]
: 23 | R (B 1 A 1O 1 1 21 20 2 1 0 27 N
8 - T1 9 8 |26 4 115 | 0 {10] 29 Q ! 1 {23 25

JK 1 8 0 0 0 |28 '8 0 3 Ll 32 o] 0 0 4 33
2 Q 32 1 0 I3 0|26 1 J 27 0 0 Q
3 4 5 B B 2 81 8 0 0 0 6| 26 1 20 l 4 32
4 1 2 | 9 8 30 0 Lo 1 § 10 )8 0 1 25 L5 31
o > 0 ' 2Q € > 8 0 e 14 i 23 0 \ 22 Q 23
) Q O 8 122 | 30 3 9 t12 {(2L{ 45 0 5 122 Woo3l
7 18 L | 3 | 27 h 1 8 | 6f 20 4 ] 1 |24 30
3 Tl LT fee 0|10 {11 | 8 29 o] of10 {19 25

Js 1 )8 0 } Q 0128 32 Q 0 Qi 32 Q Q Q 4 N
P r gfl33 ) 0of 6l 33 gt | o | &f 27 ol ol2s | o 2
3 k 01l 0 7 28 24 0 0 2 O 0 32 Q Q 3
4 0 3 F B 22 | 30 0 |23 0 51 28 0 2 |29 0 31
5 0 0 )2 o 8 0 1l |22 0} 23 0 0 55 of 23
0 Q 0 1 RS 30 1 L5 0 391 4% 0| 23 8 Q0 51
T 14 s { Y >f 14 5 I3 Q >0 1 N 0 2b W
3 3 ] 4 118 | 26 2 251 0 )1 29 0 { i [ 2|
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8 x 4 Experiment, Condition 1: Distribution of

response probability for each stimulus (Stimuli 1 to 4),
for each observer. Obtained distributions are given by
solid lines and filled circles; predicted distributions
are given by dashed lines and open circles.
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Experiment, Condition 1: Distribution of

response probability for each stimulus (Stimuli 5 to 8),
for each observer. Obtained distributions are given by
solid lines and filled circles; predicted distributions
are given by dashed lines and open circles.

40




SO11d [1nes ana ftllled clrcles; alsSurioutions preudicucu
by the model are given by dashed lines and open circles.

27

Report No. 3719 Bolt Beranek and Newman Inc.
8x4 CONDITION 2
. 0'BF 0K 0:Js
10
5
? | °
10—
' > R
= L.
= =
g sl
j.oa
g r &
w L 2
' ‘2 QL :z)
O
a g
@ 10~ -
o =
- s
| 2 =
- )
o
| 5
| o
2
| o
, o
| 0
' 10 —
u
-
[ . :
| [
oL
S A —
' 3 4 5 ¢
RESPONSE NUMBER
' Figure 7A. 8 x U4 Experiment, Condition 2: Distribution of
response probability for each stimulus (Stimuli 1 to 4),
l for each observer. Obtained distributions are given by
solid lines and filled circles; predicted distributions
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response probability for each stimulus (Stimuli
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8 x 4 Experiment, Condition 3: Distribution of

response probability for each stimulus (Stimuli 1 to 4),
for each observer. Obtained distributions are given by
solid lines and filled circles; predicted distributions
are given by dashed lines and open circles.
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Figure 8B. 8 x 4 Experiment, Condition 3: Distribution of
response probability for each stimulus (Stimuli 5 to 8),
for each observer. Obtained distributions are given by
solid lines and filled circles; predicted distributions
are given by dashed lines and open circles.
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Model Ann[lsis

Parameter FEstimation. The application of the model
to the confusion matrices proceeded in much the same way as
in the previous experiment. As before, the model was fitted
to the data under four different conditions corresponding to
combinations of two factors: (1) the inclusion or not of
periodicity as a fourth dimension, and (2) the wuse of
INDSCAL-derived or freely-estimated values for the three
salience weights, W to W3- In all cases, the psychological
coordinates of the eight stimuli on the first three
dimensions were taken from our INDSCAL analysis of the
similarity-judgment data, and the coordinates of periodicity
from our physical measure of that dimension. Model
parameters were estimated separately for each observer in
each of the three experimental conditions, and for each of

the four versions of the model.

Predictions of Confusion Matrices. The parameter

values and proportion-of-variance values for each condition,
averaged across observers, and the average values across
conditions, are shown for each of the four versions of the
model in Table 5. Comparing the average proportion of
variance accounted for by each model in Table 5 with the
comparable average value for the 8 x 8 experiment in Table

3, it is c¢lear that the model is accounting for somewhat

i
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Table §

and the Proportion of Varilance Accounted for by
the Model, Averaged Across Observers for Each of the
Three Conditions

31 I 8 x 4 Experiment: Estimated Parameter Values

“ Proportion of Variance
-
E cond. Model Parameters Accounted IMor
Wy L W, W, Wy, a Full Matrix | Error Matrix
f 3 .
i
A. Three-dimensional model : W =W INDSCAL constrained
3
e 1 UL « JL¥ .28k - 5.0 014 .580
’ 2 Jw o Lok | oak | . 17.5 &5 .08
| 3 Ll 3L * o8% - 8. LOU3 e 322
|
AVG LA 3L .28% -~ B0 7 LTU3 . 528
B. Three-dimenslonal model : w =Y free parameters
!
1 31 AR .26 - 10.6 L8659 L0973
2 .63 35 .04 = 4.9 .859 .822
3 LA 28 .28 e 6.7 . 786 672
AVG o i) «19 - 14.1 .835 « 129
; Four-dimensional model : w | -w, INDSCAL constrained, Wy, free parameter
¥

| 2O .23% L19% .29 Ve . 855 .682
2 .30% L30% 2TH .04 L0 e .684
E | I 3 AL w5 b S350 L2 2 LTHo & D
E | i
!
e AVG .28%* 2 3% .20% .29 12.3 (91 RS
e I

1 2% Four-dimensional model : w,-w, free parameters

| }
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less of the variance in the full matrix than before, but for
substantially more of the variance in the error matrix. The
first result is probably due in large part to the
considerably smaller number of trials contributing to each
of the confusion matrices -- approximately 30 -- resulting
in less stable estimates of the observed conditional
response probabilities. The second result follows from the
inclusion of noise trials on which observers are forced to
make confusion errors. As a consequence, the amount of
variability available to be explained is large in the error
matrices of the 8 x 4 experiment relative to the amount in

the error matrices of the 8 x 8 experiment.

Paralleling the results of the analysis of the 8 x 8
experiment, the pattern of changes in the variance accounted
for across the four versions of the model suggests that the
effect of including periodicity as a fourth dimension is
independent of, and additive to, the effect of freely
estimating the first three salience weights. Including
periodicity as a fourth dimension increases the proportion
of variance accounted for by § and 10 percent in the full
and error matrices, respectively (Tables SA and 5C). Freely
estimating the salience weights Wy to wq increases the
proportion of variance accounted for by 10 and 20 percent in

the full and error matrices, respectively (Tables &5A and

N7
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5B . Doing both -- including periodicity as a fourth

dimension and freely estimating the salience weights w to

1
Wy == increases the proportion of variance accounted for by
16 and 30 percent 1in the full and error matrices,

respectively (Tables 5A and 5D).

The substantial improvement in the model's
predictions, when the salience weights W, {o1lo] w3 are freed of
their INDSCAL-derived values and independently estimated in
each condition, is in contrast to the lack of improvement
observed in the 8 x 8 experiment. The reason is apparent in
Fig. 9, which shows the estimated salience weights
(including +the periodicity dimension) for each observer,
separately for the é X 8 experiment and each of the three
conditions of the 8 x 4 experiment. The pattern of
estimated weights clearly changes from one condition to
another, suggesting that the observers modified their set of
salience weights from condition to condition according to
the composition of the set of four stimuli defined as
signals. In Conditions 1 and 2, the patterns of weights
appear quite similar across observers; in Condition 3, they

appear relatively different.

The predicted response distributions for each
stimulus and for each observer in each of the conditions are

shown by the open circles connected by dashed lines in Figs.

u8
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6-8. These predictions are based on the four-dimensional
model with freely estimated salience weights. Scanning over
the large number of distributions, the over-all impression
is that there 1is a remarkably good agreement between
predicted and obtained distributions. It is worth noting
that a ten-percent deviation between obtained and predicted
probabilities corresponds to a difference of only about
three responses, given that each obtained distribution is

based on about 30 trials.

We mentioned earlier that most of the cases, 1in
which the observed response distributions for a given
stimulus differed among the three observers, were 1instances
of noise stimuli. We now observe that most of the cases in
which there is a substantial deviation between predicted and
obtained response distributions are also instances of noise
stimuli (e.g., Stimulus 6 for Observer BF in Condition 3).
In fact, the structure of the model provides an insight into
the source of these deviations. It will sometimes be true
that the interstimulus distances between a particular noise
stimulus and each of the four signal stimuli allowed as
responses are all very large, and thus that the
corresponding confusability weights are all very small. The
observer would have no difficulty 1in rejecting all four

responses as corresponding to the true "identity" of the
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presented stimulus. In this predicament the observer most
likely reinterprets the task to respond with the stimulus
among the allowable four which 1is "most similar"” ¢to the
presented stimulus, even though it is clearly incorrect.
However, if the confusability weights for all four responses
are extremely small, we may expect the observed response
distribution to be very sensitive to small differences in

salience weights, and also to other decision processes.

A particularly good illustration of the problem 1is
found 1in the response distributions to noise Stimulus 2 in
Condition 3 (Fig. 8). Each observer made a single response
exclusively -- but a different response for each observer.
In all likelihood, each observer was aware that the pattern
was Stimulus 2 at each presentation. Having decided once
which signal stimulus was "most similar" to Stimulus 2, the
observer then remembered and gave that response consistently
thereafter. It can be seen in Fig. 8 that the model
accurately predicted the different distributions for the
three observers -- but at a cost. The parameter-estimation
algorithm has attempted 0 accommodate the extreme
distribution by increasing the sensitivity parameter value
in Condition 3 relative to Conditions 1 or 2 (see Table 5D),
thus decreasing the error in predicting that particular

response distribution. As a consequence, however, the

o4
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prediction of other response distributions are now more
extreme than they otherwise would be. This effect can be
seen in the predicted distributions for most other stimuli

in Condition 3.

Over-all, however, the model, using the perceptual
space derived from similarity judgments within the context
of the full stimulus set, predicts quite well the confusion
matrices for partial identification tasks in which different
subsets of the stimuli are identified. The predictions are
improved, as in the complete identification task, when a
fourth dimension is added to the MDS-derived perceptual

space.

Adaptive Tuning

Adaptive Tuning In Identification

Our application of the model to the complete
identification task and the three conditions of the partial
identification task suggests that the observers were
flexible in their use of perceptual dimensions to 1identify
the stimuli, in that our estimates of the relative salience
weights on the several dimensions varied from condition to
condition (see Fig. 9). Given that the same set of eight

stimuli was presented in both tasks, we may ask what
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motivated the observers to adjust the pattern of salience
weights as they did across the different conditions. While
the set of stimuli remained constant across all conditions,
the subset of stimuli that we required the observer to
identify -- the "signals" -- changed from condition to
condition. Furthermore, it was only for this subset of
stimuli that the observer received discriminative feedback
that indicated which stimulus had been presented. We
believe that the observer was engaged in an adaptive tuning
process in which the relative weighting of dimensions was
adjusted in order to maximize the discriminability of the
subset of stimulus patterns to be identified in that
condition. This tuning process probably takes place
gradually, over many trials, based on the feedback given the

observer regarding the correctness of identification.

Given that observers were instructed to maximize
their percentage of correct identifications, it seems likely
that this criterion formed their basis for tuning. To test
this hypothesis, we have determined from the model, for each
condition of the experiment, what pattern of aimension
salience weights would maximize the probability of a correct
signal identification. The optimal pattern of weights,
assuming an average value for the sensitivity parameter, is

plotted by the dashed line for each experimental condition

-
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of both tasks in Fig. 9. While the detailed agreement of
the observed and optimal weight patterns is not particularly
good, there 1is a general correspondence of observed and
predicted pattern shape across conditions, with the
exception of Condition 3 of the 8 x 4 task. The comparison
in this particular condition is probably not meaningful
because of the large inter-observer differences, as
discussed earlier. In general, the observed patterns of
dimension salience weights seem consistent with the
hypothesis that observers are tuning their weighting of
dimensions in order to maximize the probability of a correct

identification.

Adaptive Tuning In Judgment of Similarity

The concept of adaptive tuning may also provide an
explanation for the failure of periodicity to emerge as a
dimension in the INDSCAL analysis of the similarity
judgments obtained from our three observers. If we assume
that the observers' perceptual spaces were the same in both
the similarity-judgment and 1identification tasks, then
periodicity could fail to emerge as a dimension in the
INDSCAL analysis if the observers were according it zero, or
nearly zero, weight. This would be analogous to our

analysis of Condition 2 of the partial identification task
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in which dimension 3 (contrast) was given zero weight by all
observers, although this dimension presumably was available
since it was wused 1in other conditions. Thus, we suggest
that periodicity was present in the observers' perceptual
spaces in the similarity-judgment task, but given zero
weight in the adapted pattern of dimension weights.
Moreover, we believe that the particular pattern of weights
resulted from an adaptive tuning process that sought to
optimize some aspect of performance, as in the
identification task. Since observers were instructed to map
their perceived range of similarities into numbers so as to
use the entire range from one to ten, we speculate that
observers may have tuned dimension weights to obtain the
maximal possible range of inter-stimulus distances over all
pairs of stimuli. Further work is required to decide this

issue.

Discussion

A Validation of MDS Procedures and the Decision Model

Our approach in this paper assumes (1) that a set of
complex stimuli can be represented perceptually as a set of
points in a multidimensional psychological space, (2) that
an MDS procedure can be used to derive the dimensions of

that space and the relative loci of the stimuli within the
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space, and (3) that identification confusions can be
predicted by a simple decision model based on weighted
interstimulus distances. Our success in predicting
confusion matrices for individual observers across several

experimental conditions provides support for this approach.

We believe that this outcome provides a significant
validation of the use of MDS procedures to reveal perceptual
structure. Other evidence for the validity of MDS-derived
spaces has relied largely on the intuitive reasonableness of
the abstracted dimensions and stimulus configurations. The
present outcome provides much stronger support in that the
MDS-derived space is used to predict data in a different,
independent task. To be sure, the best prediction of
identification behavior occurred when the MDS-derived space
for our three observers was supplemented by an additional
dimension. Nonetheless, the first three dimensions revealed
by the MDS procedure for those observers were useful in the

prediction.

Our results also support the decision model as a
description of the identification process. The model
accounts well for the changes in performance observed across
different conditions ik the complete and partial
identification tasks. Of particular interest is the fact

that the model accounts for these changes in performance in
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terms of changes in the relative salience of perceptual
dimensions rather than in terms of changes in the structure
of the perceptual space. In the model, a given stimulus 1is
assumed to have a fixed location in the perceptual space,

regardless of changing stimulus context.

The MDS/Decision-Model Approach as an Aid in
Predicting Tdentification Performance

A new, particular identification task arises
whenever new signals come under study. New signals are
studied when new sources, sensors, settings, or displays are
discovered, defined, or devised. Examples are replete in
medical diagnosis, nondestructive testing of materials and
equipment, military surveillance, analysis of biological
microstructures, or study of the perceptually handicapped.
Our experiments enhance the possibility that the present
approach can be wused to gain understanding about, and

predict behavior in, any particular identification task.

Gaining understanding about a new set of signals, in

this context, means isolating the perceptual dimensions that

are useful, and assigning the proper saliences to those
dimensions. The practical import of the approach described
here is that perceptual dimensions can be isolated quite
simply and quickly. We suspect that observers c¢an be

economically trained to use the useful dimensions, and to
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use them approximately with weights that maximize the

probability of correct identifications.

We have pointed out that our application of an MDS
procedure to our three test observers did not define all of
the dimensions that were found useful in the identification
task, but that the additional dimension 1in question
(periodicity) did appear in the four-dimensional MDS
solution yielded by 14 other judges, some of whom had more
general experience with signals of the sort wused than the
three observers. In examining a new identification task,
one might do well to employ a rather large number of judges,
having expertise with the general class of signals 1in
question, and examine carefully the MDS solutions of larger

dimensionality.

An alternative might be to ask the judges in the MDS
task to rate the "confuszbility" of the stimulus pairs, with
the identification task in their minds, rather than stimulus
similarity. Our three test observers might have yielded the
additional wuseful dimension (periodicity) under such
instructions. Though our present experiments were
constrained by our interest in validating MDS procedures as
they are usually applied, MDS tasks undertaken specifically
to analyze new sets of signals might possibly be adjusted in

this manner to make them maximally useful.
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